Prediction of the vibro-acoustic behavior of a submerged shell non periodically stiffened by internal frames

J Acoust Soc Am. 2010 Jul;128(1):137-51. doi: 10.1121/1.3436526.

Abstract

This paper describes the development of a numerical model to predict the vibro-acoustic behavior of an externally fluid loaded shell with non-uniformly space stiffeners and transversal bulkheads. This model constitutes an extension of the existing semi-analytic capability in predicting the acoustics of axisymmetric structures. It is based on the circumferential admittance approach (CAA) which consists in substructuring the problem so that the fluid loaded shell constitutes one subsystem and the frames constitute other independent subsystems. These subsystems are coupled together by assembling the circumferential admittances that characterize each uncoupled subsystem. Different numerical approaches can be used to estimate these admittances. The standard finite element code is well adapted for evaluating the admittances of the internal frames whatever their cross-section geometries and material properties. Classical discretization methods such as finite elements and boundary elements are too time-consuming for the fluid loaded shell. To avoid this obstacle, three different approaches with different degrees of approximation are proposed to estimate the shell admittances. Comparisons with a reference case are proposed to evaluate the accuracy and the efficiency of each of these three approaches. With the optimal approach, CAA gives very good results in satisfactory computing time. It is well-adapted for analyzing the behavior of a submarine pressure hull in a wide frequency range of interest.

Publication types

  • Comparative Study

MeSH terms

  • Acoustics*
  • Computer Simulation
  • Engineering*
  • Finite Element Analysis
  • Fourier Analysis
  • Models, Theoretical*
  • Motion
  • Numerical Analysis, Computer-Assisted
  • Pressure
  • Ships*
  • Sound Spectrography
  • Sound*
  • Vibration