Hepatobiliary disposition of 3alpha,6alpha,7alpha,12alpha-tetrahydroxy-cholanoyl taurine: a substrate for multiple canalicular transporters

Drug Metab Dispos. 2010 Oct;38(10):1723-30. doi: 10.1124/dmd.110.033480. Epub 2010 Jul 19.

Abstract

Tetrahydroxy bile acids become major biliary bile acids in Bsep(-/-) mice and Fxr(-/-) mice fed cholic acid; we characterized disposition of these novel bile acids that also occur in patients with cholestasis. We investigated mouse Mrp2 (mMrp2) and P-glycoprotein [(P-gp) mMdr1a]-mediated transport of a tetrahydroxy bile acid, 6α-OH-taurocholic acid (6α-OH-TC), and its biliary excretion in wild-type and Mrp2(-/-) mice in the presence or absence of N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), a P-gp and breast cancer resistance protein inhibitor. 6α-OH-TC was rapidly excreted into bile of wild-type mice (78% recovery); coinfusion of GF120918 had no significant effect. In Mrp2(-/-) mice, biliary excretion was decreased (52% recovery) and coinfusion of GF120918 further decreased these values (34% recovery). In wild-type, but not Mrp2(-/-), mice, 6α-OH-TC increased bile flow 2.5-fold. Membrane vesicle transport studies of 6α-OH-TC (0.05-0.75 mM) yielded saturation kinetics with a higher apparent affinity for mMrp2 (K(m) = 0.13 mM) than for mMdr1a (K(m) = 0.33 mM); mBsep transported 6α-OH-TC with positive cooperativity (Hill slope = 2.1). Human multidrug resistance-associated protein (MRP) 2 and P-gp also transported 6α-OH-TC but with positive cooperativity (Hill slope = 3.6 and 1.6, respectively). After intraileal administration, the time course of 6α-OH-TC biliary recovery was similar to that of coinfused taurocholate, implying that 6α-OH-TC can undergo enterohepatic cycling. Thus, Mrp2 plays a key role in 6α-OH-TC biliary excretion, whereas P-glycoprotein plays a secondary role; Bsep likely mediates excretion of 6α-OH-TC in the absence of Mrp2 and P-gp. In Bsep(-/-) mice, efficient synthesis of tetrahydroxy bile acids that are Mrp2 and P-gp substrates can explain the noncholestatic phenotype.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B / antagonists & inhibitors
  • ATP Binding Cassette Transporter, Subfamily B / genetics
  • ATP Binding Cassette Transporter, Subfamily B / metabolism*
  • Acridines / pharmacology
  • Animals
  • Bile Acids and Salts / metabolism*
  • Bile Canaliculi / metabolism*
  • Biological Transport
  • Cell Membrane / metabolism
  • Liver / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Multidrug Resistance-Associated Protein 2
  • Multidrug Resistance-Associated Proteins / antagonists & inhibitors
  • Multidrug Resistance-Associated Proteins / genetics
  • Multidrug Resistance-Associated Proteins / metabolism*
  • Perfusion
  • Substrate Specificity
  • Taurocholic Acid / analogs & derivatives*
  • Taurocholic Acid / metabolism
  • Tetrahydroisoquinolines / pharmacology

Substances

  • 3alpha,6alpha,7alpha,12alpha-tetrahydroxy-cholanoyl taurine
  • ABCC2 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • Acridines
  • Bile Acids and Salts
  • Multidrug Resistance-Associated Protein 2
  • Multidrug Resistance-Associated Proteins
  • Tetrahydroisoquinolines
  • Taurocholic Acid
  • multidrug resistance protein 3
  • Elacridar