Profiling oestrogens and testosterone in human urine by stable isotope dilution/benchtop gas chromatography-mass spectrometry

Steroids. 2010 Dec 12;75(13-14):1067-74. doi: 10.1016/j.steroids.2010.06.014. Epub 2010 Jul 7.

Abstract

Oestrogens, such as oestrone (E(1)), 17β-oestradiol (E(2)), oestriol (E(3)) and their biologically active metabolites 2-methoxyoestrone (2-MeOE(1)), 2-hydroxyoestradiol (2-OHE(2)) 16-ketooestradiol (16-OE(2)), 16-epioestriol (16-epiE(3)), as well as testosterone (T) play an important role in physiological and pathological developmental processes during human development. We therefore aimed at developing an isotope dilution/bench top gas chromatography-mass spectrometry (ID/GC-MS) method, based on benchtop GC-MS, for the simultaneous determination ('profiling') of the above analytes in children. The method consisted of equilibration of urine (5 ml) with a cocktail containing stable isotope-labelled analogues of the analytes as internal standards ([2,4-(2)H(2)]E(1), [2,4,16,16-(2)H(4)]E(2), [2,4,17-(2)H(3)]E(3), [16,16,17-(2)H(3)]T, [1,4,16,16-(2)H(4)]2-MeOE(1), [1,4,16,16,17-(2)H(5)]2-OHE(2), [2,4,15,15,17-(2)H(5)]16-OE(2) and [2,4-(2)H(2)]16-epiE(3)). Then, solid-phase extraction (C(18) cartridges), enzymatic hydrolysis (sulphatase from Helix pomatia (type H-1)), re-extraction, purification by anion exchange chromatography and derivatisation to trimethylsilyl ethers followed. The samples were analysed by GC-MS (Agilent GC 6890N/5975MSD; fused silica capillary column 25 m × 0.2 mm i.d., film 0.10 μm). Calibration plots were linear and showed excellent reproducibility with coefficients of determination (r(2)) between 0.999 and 1.000. Intra- and inter-assay coefficients of variation (CV) were <2.21% for all quantified metabolites. Sensitivity was highest for 2-OHE(2) (0.25 pg per absolute injection: signal-to-noise ratio (S/N)=3) and lowest for 16-epiE(3) (2 pg per absolute injection: S/N=2.6), translating into corresponding urine sample analyte concentrations of 0.025 ng ml(-1) and 0.2 ng ml(-1), respectively. Accuracy - determined in a two-level spike experiment - showed relative errors ranging between 0.15% for 16-OE(2) and 11.63% for 2-OHE(2). Chromatography showed clear peak shapes for the components analysed. In summary, we describe a practical, sensitive and specific ID/GC-MS assay capable of profiling the above-mentioned steroids in human urine from childhood onwards.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Calibration
  • Deuterium / chemistry
  • Estrogens / urine*
  • Gas Chromatography-Mass Spectrometry / methods*
  • Gas Chromatography-Mass Spectrometry / standards
  • Humans
  • Reference Standards
  • Testosterone / urine*
  • Time Factors
  • Urinalysis / methods*
  • Urinalysis / standards

Substances

  • Estrogens
  • Testosterone
  • Deuterium