Host-derived suppression of nematode reproductive and fitness genes decreases fecundity of Heterodera glycines Ichinohe

Planta. 2010 Aug;232(3):775-85. doi: 10.1007/s00425-010-1209-7. Epub 2010 Jun 26.

Abstract

To control Heterodera glycines Ichinohe (soybean cyst nematode) in Glycine max (L.) Merr. (soybean), we evaluated the use of producing transgenic soybean seedlings expressing small interfering RNAs (siRNAs) against specific H. glycines genes. Gene fragments of three genes related to nematode reproduction or fitness (Cpn-1, Y25 and Prp-17) were PCR-amplified using specific primers and independently cloned into the pANDA35HK RNAi vector using a Gateway cloning strategy. Soybean roots were transformed with these constructions using a composite plant system. Confirmation of transformation was attained by PCR and Southern blot analysis. Transgene expression was detected using reverse transcription PCR (RT-PCR) and expression of siRNAs was confirmed in transgenic plants using northern blot analysis. Bioassays performed on transgenic composite plants expressing double-stranded RNA fragments of Cpn-1, Y25 and Prp-17 genes resulted in a 95, 81 and 79% reduction for eggs g(-1) root, respectively. Furthermore, we demonstrated a significant reduction in transcript levels of the Y25 and Prp-17 genes of the nematodes feeding on the transgenic roots via real-time RT-PCR whereas the expression of non-target genes were not affected. The results of this study demonstrate that over-expression of RNA interference constructs of nematode reproduction or fitness-related genes can effectively control H. glycines infection with levels of suppression comparable to conventional resistance.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • Blotting, Northern
  • Blotting, Southern
  • DNA Primers
  • Fertility / genetics*
  • Glycine max / parasitology
  • Nematoda / genetics
  • Nematoda / physiology*
  • Plants, Genetically Modified
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • DNA Primers