Compound-specific bromine isotope analysis of brominated diphenyl ethers using gas chromatography multiple collector/inductively coupled plasma mass spectrometry

Rapid Commun Mass Spectrom. 2010 Jul 30;24(14):2135-42. doi: 10.1002/rcm.4629.

Abstract

The bromine isotope composition is potentially diagnostic in both degradation monitoring and source apportionment of organobromines in the environment. A method for compound-specific bromine isotope analysis (delta(81)Br) based on gas chromatography multiple collector inductively coupled plasma mass spectrometry (GC/ICPMS) was developed for common brominated diaromatic compounds. Brominated diphenyl ethers (BDEs) in Bromkal 70-5DE, a technical flame-retardant mixture containing mainly BDEs #47, #99 and #100, were used as test substances, with standard bracketing for the samples achieved through co-injected monobromobenzene (MBB) with a known delta(81)Br of -0.39 per thousand vs. Standard Mean Ocean Bromine (SMOBr). Three different heated transfer lines were constructed and tested to achieve efficient conduction of the BDEs from the gas chromatograph to the ICPMS instrument. The MBB was analyzed with a precision of 0.4 per thousand (1 s, n = 18). The precision for BDEs was 1.4-1.8 per thousand (1 s, n = 10-12 depending on the congener). The lower precision for the BDEs than for MBB may reflect the heat required to prevent condensation of the analytes in ICP torch assembly. The use of an internal standard of similar chemical structure to the analytes alleviates this problem, as illustrated by a difference of 0.3 +/- 0.7 per thousand (1 s, n = 6) between the delta(81)Br values of co-injected methoxy BDE-47 and BDE-47 extracted from whale blubber. Improvements in precision and accuracy may be achieved by the use of a more efficient heating of the torch assembly in conjunction with a set of internal standards that match the target compounds.