Microfluidics in macro-biomolecules analysis: macro inside in a nano world

Anal Bioanal Chem. 2010 Sep;398(1):239-64. doi: 10.1007/s00216-010-3857-7. Epub 2010 Jun 13.

Abstract

Use of microfluidic devices in the life sciences and medicine has created the possibility of performing investigations at the molecular level. Moreover, microfluidic devices are also part of the technological framework that has enabled a new type of scientific information to be revealed, i.e. that based on intensive screening of complete sets of gene and protein sequences. A deeper bioanalytical perspective may provide quantitative and qualitative tools, enabling study of various diseases and, eventually, may offer support for the development of accurate and reliable methods for clinical assessment. This would open the way to molecule-based diagnostics, i.e. establish accurate diagnosis and disease prognosis based on identification and/or quantification of biomacromolecules, for example proteins or nucleic acids. Finally, the development of disposable and portable devices for molecule-based diagnosis would provide the perfect translation of the science behind life-science research into practical applications dedicated to patients and health practitioners. This review provides an analytical perspective of the impact of microfluidics on the detection and characterization of bio-macromolecules involved in pathological processes. The main features of molecule-based diagnostics and the specific requirements for the diagnostic devices are discussed. Further, the techniques currently used for testing bio-macromolecules for potential diagnostic purposes are identified, emphasizing the newest developments. Subsequently, the challenges of this type of application and the status of commercially available devices are highlighted, and future trends are noted.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Humans
  • Macromolecular Substances / analysis*
  • Microfluidics*
  • Nanotechnology*
  • Pharmaceutical Preparations / analysis*

Substances

  • Macromolecular Substances
  • Pharmaceutical Preparations