The supramolecular architecture, function, and regulation of thylakoid membranes in red algae: an overview

Photosynth Res. 2010 Nov;106(1-2):73-87. doi: 10.1007/s11120-010-9560-x. Epub 2010 Jun 3.

Abstract

Red algae are a group of eukaryotic photosynthetic organisms. Phycobilisomes (PBSs), which are composed of various types of phycobiliproteins and linker polypeptides, are the main light-harvesting antennae in red algae, as in cyanobacteria. Two morphological types of PBSs, hemispherical- and hemidiscoidal-shaped, are found in different red algae species. PBSs harvest solar energy and efficiently transfer it to photosystem II (PS II) and finally to photosystem I (PS I). The PS I of red algae uses light-harvesting complex of PS I (LHC I) as a light-harvesting antennae, which is phylogenetically related to the LHC I found in higher plants. PBSs, PS II, and PS I are all distributed throughout the entire thylakoid membrane, a pattern that is different from the one found in higher plants. Photosynthesis processes, especially those of the light reactions, are carried out by the supramolecular complexes located in/on the thylakoid membranes. Here, the supramolecular architecture, function and regulation of thylakoid membranes in red algal are reviewed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Adaptation, Physiological
  • Energy Transfer
  • Photosynthesis
  • Phycobilisomes / chemistry
  • Phycobilisomes / metabolism
  • Rhodophyta / metabolism*
  • Thylakoids / chemistry*
  • Thylakoids / metabolism*

Substances

  • Phycobilisomes