Are ankle chondrocytes from damaged fragments a suitable cell source for cartilage repair?

Osteoarthritis Cartilage. 2010 Aug;18(8):1067-76. doi: 10.1016/j.joca.2010.04.010. Epub 2010 Apr 29.

Abstract

Objective: To characterize the post-expansion cartilage-forming capacity of chondrocytes harvested from detached fragments of osteochondral lesions (OCLs) of ankle joints (Damaged Ankle Cartilage Fragments, DACF), with normal ankle cartilage (NAC) as control.

Design: DACF were obtained from six patients (mean age: 35 years) with symptomatic OCLs of the talus, while NAC were from 10 autopsies (mean age: 55 years). Isolated chondrocytes were expanded for two passages and then cultured in pellets for 14 days or onto HYAFF-11 meshes (FAB, Italy) for up to 28 days. Resulting tissues were assessed histologically, biochemically [glycosaminoglycan (GAG), DNA and type II collagen (CII)] and biomechanically.

Results: As compared to NAC, DACF contained significantly lower amounts of DNA (3.0-fold), GAG (5.3-fold) and CII (1.5-fold) and higher amounts of type I collagen (6.2-fold). Following 14 days of culture in pellets, DACF-chondrocytes generated tissues less intensely stained for Safranin-O and CII, with significantly lower GAG contents (2.8-fold). After 28 days of culture onto HYAFF((R))-11, tissues generated by DACF-chondrocytes were less intensely stained for Safranin-O and CII, contained significantly lower amounts of GAG (1.9-fold) and CII (1.4-fold) and had lower equilibrium (1.7-fold) and dynamic pulsatile modulus (3.3-fold) than NAC-chondrocytes.

Conclusion: We demonstrated that DACF-chondrocytes have inferior cartilage-forming capacity as compared to NAC-chondrocytes, possibly resulting from environmental changes associated with trauma/disease. The study opens some reservations on the use of DACF-derived cells for the repair of ankle cartilage defects, especially in the context of tissue engineering-based approaches.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Ankle Joint
  • Cartilage, Articular / metabolism
  • Cell Differentiation
  • Cells, Cultured
  • Chondrocytes / metabolism*
  • Chondrogenesis / physiology*
  • Female
  • Humans
  • Male
  • Talus
  • Tissue Engineering / methods*