Biaxial mechanical testing of human sclera

J Biomech. 2010 Jun 18;43(9):1696-701. doi: 10.1016/j.jbiomech.2010.02.031.

Abstract

The biomechanical environment of the optic nerve head (ONH), of interest in glaucoma, is strongly affected by the biomechanical properties of sclera. However, there is a paucity of information about the variation of scleral mechanical properties within eyes and between individuals. We thus used biaxial testing to measure scleral stiffness in human eyes. Ten eyes from 5 human donors (age 55.4+/-3.5 years; mean+/-SD) were obtained within 24h of death. Square scleral samples (6mm on a side) were cut from each ocular quadrant 3-9 mm from the ONH centre and were mechanically tested using a biaxial extensional tissue tester (BioTester 5000, CellScale Biomaterials Testing, Waterloo). Stress-strain data in the latitudinal (toward the poles) and longitudinal (circumferential) directions, here referred to as directions 1 and 2, were fit to the four-parameter Fung constitutive equation W=c(e(Q)-1), where Q=c(1)E(11)(2)+c(2)E(22)(2)+2c(3)E(11)E(22) and W, c's and E(ij) are the strain energy function, material parameters and Green strains, respectively. Fitted material parameters were compared between samples. The parameter c(3) ranged from 10(-7) to 10(-8), but did not contribute significantly to the accuracy of the fitting and was thus fixed at 10(-7). The products cc(1) and cc(2), measures of stiffness in the 1 and 2 directions, were 2.9+/-2.0 and 2.8+/-1.9 MPa, respectively, and were not significantly different (two-sided t-test; p=0.795). The level of anisotropy (ratio of stiffness in orthogonal directions) was 1.065+/-0.33. No statistically significant correlations between sample thickness and stiffness were found (correlation coefficients=-0.026 and -0.058 in directions 1 and 2, respectively). Human sclera showed heterogeneous, near-isotropic, nonlinear mechanical properties over the scale of our samples.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anisotropy
  • Computer Simulation
  • Elastic Modulus / physiology
  • Female
  • Humans
  • Male
  • Middle Aged
  • Models, Biological*
  • Sclera / physiology*
  • Tensile Strength / physiology