Gas-phase energetics of reductive elimination from a palladium(II) N-heterocyclic carbene complex

Chemistry. 2010 May 10;16(18):5408-15. doi: 10.1002/chem.200902929.

Abstract

Energy-resolved collision-induced dissociation experiments using tandem mass spectrometry are reported for an phenylpalladium N-heterocyclic carbene (NHC) complex. Reductive elimination of an NHC ligand as a phenylimidazolium ion involves a barrier of 30.9(14) kcal mol(-1), whereas competitive ligand dissociation requires 47.1(17) kcal mol(-1). The resulting three-coordinate palladium complex readily undergoes reductive C-C coupling to give the phenylimidazolium pi complex, for which the binding energy was determined to be 38.9(10) kcal mol(-1). Density functional calculations at the M06-L//BP86/TZP level of theory are in very good agreement with experiment. In combination with RRKM modeling, these results suggest that the rate-determining step for the direct reductive elimination process switches from the C-C coupling step to the fragmentation of the resulting sigma complex at low activation energy.