Photopatternable source/drain electrodes using multiwalled carbon nanotube/polymer nanocomposites for organic field-effect transistors

ACS Appl Mater Interfaces. 2009 Oct;1(10):2332-7. doi: 10.1021/am900483y.

Abstract

We fabricated photopatternable and conductive polymer/multiwalled carbon nanotube (MWNT) composites by dispersing MWNTs with poly(4-styrenesulfonic acid) (PSS) and poly(acrylic acid) (PAA) in water. PAA enables photo-cross-linking in the composite by adding ammonium dichromate, and PSS assists the dispersion of MWNTs in the composites, leading to higher conductivity. Composite films of PAA/PSS-MWNTs were characterized by conductivities of 1.4-210 S/cm and a work function of 4.46 eV, which could be increased to 4.76 eV during UV photo-cross-linking. By using PAA/PSS-MWNT composites as source/drain electrodes, 6,13-bis(triisopropylsilylethynyl)pentacene field-effect transistors (FET) exhibited a field-effect mobility of 0.101 +/- 0.034 cm(2)/(V s), which is 9 times higher than that of FETs fabricated with gold as source/drain electrodes (0.012 +/- 0.003 cm(2)/(V s)).

Publication types

  • Research Support, Non-U.S. Gov't