Effect of TiO, nanoparticles on the interface in the PET-rubber composites

J Nanosci Nanotechnol. 2010 Apr;10(4):2518-26. doi: 10.1166/jnn.2010.1440.

Abstract

Usually, ceramic powders (SiO2, ZnO) are used as fillers for enhancing rubber mechanical strength. Poly-ethylene terephthalate (PET)-rubber nanocomposites were prepared by compression molding using titanium oxide (TiO2) nanoparticles as low content fillers (<2% wt). The interface properties of PET-rubber nanocomposites were studied before and after keeping the samples under UV-radiation for a week. UV-radiation has interesting potential for the photochemical modification of polymers and TiO2. The influence of UV radiation on the properties of the interface polymer-TiO2 nanoparticles was evaluated. The impact of nanoparticle aggregates on the nanometer to micrometer organization of PET-rubber composites was studied with Atomic Force Microscopy (AFM). The interface properties were explained by measuring the contact angles and surface tensions. The interactions between components of nanocomposites were investigated with Fourier Transform-Infrared (FTIR) and the effects of TiO2 nanoparticle on the interfaces and composites crystalline structure were evaluated by X-ray diffraction (XRD). The results proved that the TiO2 nanoparticles, in different weight percentages, did not alter the nanocomposites crystallinity or the average crystallites size, but improve the interface properties.

MeSH terms

  • Crystallization / methods*
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Nanotechnology / methods*
  • Particle Size
  • Polyethylene Glycols / chemistry*
  • Polyethylene Terephthalates
  • Rubber / chemistry*
  • Surface Properties
  • Titanium / chemistry*

Substances

  • Macromolecular Substances
  • Polyethylene Terephthalates
  • titanium dioxide
  • Polyethylene Glycols
  • Rubber
  • Titanium