Microstructure and corrosion properties of as sub-rapid solidification Mg-Zn-Y-Nd alloy in dynamic simulated body fluid for vascular stent application

J Mater Sci Mater Med. 2010 Jul;21(7):2001-8. doi: 10.1007/s10856-010-4063-z. Epub 2010 Mar 30.

Abstract

Magnesium alloy stent has been employed in animal and clinical experiment in recent years. It has been verified to be biocompatible and degradable due to corrosion after being implanted into blood vessel. Mg-Y-Gd-Nd alloy is usually used to construct an absorbable magnesium alloy stent. However, the corrosion resistant of as cast Mg-Y-Gd-Nd alloy is poor relatively and the control of corrosion rate is difficult. Aiming at the requirement of endovascular stent in clinic, a new biomedical Mg-Zn-Y-Nd alloy with low Zn and Y content (Zn/Y atom ratio 6) was designed, which exists quasicrystals to improve its corrosion resistance. Additionally, sub-rapid solidification processing was applied for preparation of corrosion-resisting Mg-Zn-Y-Nd and Mg-Y-Gd-Nd alloys. Compared with the as cast sample, the corrosion behavior of alloys in dynamic simulated body fluid (SBF) (the speed of body fluid: 16 ml/800 ml min(-1)) was investigated. The results show that as sub-rapid solidification Mg-Zn-Y-Nd alloy has the better corrosion resistance in dynamic SBF due to grain refinement and fine dispersion distribution of the quasicrystals and intermetallic compounds in alpha-Mg matrix. In the as cast sample, both Mg-Zn-Y-Nd and Mg-Y-Gd-Nd alloys exhibit poor corrosion resistance. Mg-Zn-Y-Nd alloy by sub-rapid solidification processing provides excellent corrosion resistance in dynamic SBF, which open a new window for biomedical materials design, especially for vascular stent application.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alloys / chemistry*
  • Biocompatible Materials / chemistry
  • Body Fluids
  • Corrosion
  • Magnesium / chemistry*
  • Neodymium
  • Physical Phenomena
  • Prostheses and Implants
  • Stents*
  • Yttrium
  • Zinc

Substances

  • Alloys
  • Biocompatible Materials
  • Neodymium
  • Yttrium
  • Magnesium
  • Zinc