Chromosomal evolution in the Brazilian geckos of the genus Gymnodactylus (Squamata, Phyllodactylidae) from the biomes of Cerrado, Caatinga and Atlantic rain forest: evidence of Robertsonian fusion events and supernumerary chromosomes

Cytogenet Genome Res. 2009;127(2-4):191-203. doi: 10.1159/000295175. Epub 2010 Mar 9.

Abstract

Chromosomes of the South American geckos Gymnodactylus amarali and G. geckoides from open and dry areas of the Cerrado and Caatinga biomes in Brazil, respectively, were studied for the first time, after conventional and AgNOR staining, CBG- and RBG-banding, and FISH with telomeric sequences. Comparative analyses between the karyotypes of open areas and the previously studied Atlantic forest species G. darwinii were also performed. The chromosomal polymorphisms detected in populations of G. amarali from the states of Goiás and Tocantins is the result of centric fusions (2n = 38, 39 and 40), suggesting a differentiation from a 2n = 40 ancestral karyotype and the presence of supernumerary chromosomes. The CBG- and RBG-banding patterns of the Bs are described. G. geckoides has 40 chromosomes with gradually decreasing sizes, but it is distinct from the 2n = 40 karyotypes of G. amarali and G. darwinii due to occurrence of pericentric inversions or centromere repositioning. NOR location seems to be a marker for Gymnodactylus, as G. amarali and G. geckoides share a medium-sized subtelocentric NOR-bearing pair, while G. darwinii has NORs at the secondary constriction of the long arm of pair 1. The comparative analyses indicate a non-random nature of the Robertsonian rearrangements in the genus Gymnodactylus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brazil
  • Chromosome Banding
  • Chromosomes / genetics*
  • Evolution, Molecular*
  • Gene Rearrangement / genetics*
  • In Situ Hybridization, Fluorescence
  • Karyotyping
  • Lizards / genetics*
  • Silver Staining
  • Telomere / genetics
  • Trees