Attenuated total reflection angular spectra of a system of alternating plasma-dielectric layers

Appl Opt. 1978 Nov 15;17(22):3627-35. doi: 10.1364/AO.17.003627.

Abstract

The attenuated total reflection (ATR) angular spectra of a five-film system have been observed. Successive layers of Ag-LiF-Ag-LiF-Ag are evaporated onto the base of a glass prism. Surface plasma wave resonances corresponding to coupled oscillations at the plasma-dielectric interfaces were found for p-polarization. Guided light modes coupled between the two dielectric layers were observed in both p- and s-polarized spectra. If guided mode reflectance resonances occur at less than the critical angle they have associated with them resonance transmissions. In general the ATR resonances of the five-film system occur as doublets, which form a splitting of the resonances of a single dielectric slab bounded by Ag layers. The resonant oscillations are demonstrated by detailed calculations of the Poynting vector field and electric field oscillations, which also help in understanding the source of discrepancies between experimental and calculated ATR spectra. These discrepancies are thought to be due largely to the surface roughness of evaporated LiF films. The roughness is modeled as thin cermet layers at the LiF-Ag interfaces, and the optical constants of the cermets are calculated by the Maxwell Garnett theory. When the ATR spectra are then computed with the pseudolayers inserted, much improved agreement with experiment can be obtained.