Aggregation of deamidated human betaB2-crystallin and incomplete rescue by alpha-crystallin chaperone

Exp Eye Res. 2010 Jun;90(6):688-98. doi: 10.1016/j.exer.2010.02.007. Epub 2010 Feb 23.

Abstract

Aging of the lens is accompanied by extensive deamidation of the lens specific proteins, the crystallins. Deamidated crystallins are increased in the insoluble proteins and may contribute to cataracts. Deamidation has been shown in vitro to alter the structure and decrease the stability of human lens betaB1, betaB2 and betaA3-crystallin. Of particular interest, betaB2 mutants were constructed to mimic the effect of in vivo deamidations at the interacting interface between domains, at Q70 in the N terminal domain and at Q162, its C-terminal homologue. The double mutant was also constructed. We previously reported that deamidation at the critical interface sites decreased stability, while preserving the dimeric 3D structure. In the present study, dynamic light scattering, differential scanning calorimetry and small angle X-ray scattering were used to investigate the effect of deamidation on stability, thermal unfolding and aggregation. The bovine betaLb fraction was used for comparative analysis. The chaperone requirements of the various samples were determined using bovine alpha-crystallins as the chaperone. Deamidation at both interface Gln residues or at Q70, but not Q162, significantly lowered the temperature for unfolding and aggregation, which was rapidly followed by precipitation. This deamidation-induced aggregation and precipitation was not completely prevented by alpha-crystallin chaperone. A potential mechanism for cataract formation in vivo involving accumulation of deamidated beta-crystallin aggregates is discussed.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amides / metabolism
  • Animals
  • Calorimetry, Differential Scanning
  • Cattle
  • Light
  • Molecular Chaperones / chemistry*
  • Molecular Chaperones / genetics
  • Molecular Chaperones / metabolism
  • Protein Denaturation
  • Scattering, Radiation
  • X-Ray Diffraction
  • alpha-Crystallins / chemistry*
  • alpha-Crystallins / genetics
  • alpha-Crystallins / metabolism
  • beta-Crystallin B Chain / chemistry*
  • beta-Crystallin B Chain / genetics
  • beta-Crystallin B Chain / metabolism

Substances

  • Amides
  • Molecular Chaperones
  • alpha-Crystallins
  • beta-Crystallin B Chain
  • beta-crystallin B2