Redefining the stormwater first flush phenomenon

Water Res. 2010 Apr;44(8):2487-98. doi: 10.1016/j.watres.2010.01.022. Epub 2010 Jan 29.

Abstract

The first flush in urban runoff has been an important, yet disputed phenomenon amongst many researchers. The vast differences in the evidence could be solely due to limitations of the first flush current definition and the approach used for its assessment. There is a need for revisiting the first flush theory in the light of its practical applications to urban drainage management practices. We propose that a catchment's first flush behaviour is to be quantified by the runoff volume required to reduce a catchment's stormwater pollutant concentrations to background levels. The proposed method for assessment of this runoff volume starts by finding the average catchment pollutant concentrations for a given increment of discharged volume using a number of event pollutographs. Non-parametric statistics are then used to establish the characteristic pollutograph by pooling statistically indifferent runoff increments (known as slices) together. This allows the identification of the catchment's initial and background pollutant concentrations and for quantification of the first flush volume and its strength. The novel technique was used on seven catchments around Melbourne, Australia, with promising results. Sensitivity to the chosen increment of runoff (for which mean concentrations are calculated) indicated that when dealing with discrete flow-weighted water quality data, a suitable slice size should closely match the flow-weighting of samples. The overall sensitivity to runoff increment and level of significance was found to be negligible. Further research is needed to fully develop this method.

MeSH terms

  • Cities
  • Environmental Monitoring
  • Models, Theoretical
  • Rain*
  • Water Movements
  • Water Pollution / analysis
  • Water Pollution / prevention & control*