Mixed quantum-classical reaction path dynamics of HCl elimination from chloroethane

J Phys Chem A. 2010 Apr 1;114(12):4304-12. doi: 10.1021/jp9072679.

Abstract

The dynamics of four-centered HCl elimination from chloroethane are studied using a mixed quantum-classical method based on a reaction path Hamiltonian. Both the structural details of the reaction and the partitioning of the exit-channel potential energy to the products are analyzed. The minimum energy path was calculated at the B3LYP/6-311++G(2d,2p) level of theory, which was followed by energy-partitioning dynamics computations. Selective vibrational excitation of the HCl product was observed, leading to a vibrational state distribution in good agreement with experiment. Differences between HCl elimination from C(2)H(5)Cl and HF elimination from C(2)H(5)F, particularly in the ethylene fragment, were observed and are discussed.