A concise synthesis of 1,4-dihydro-[1,4]diazepine-5,7-dione, a novel 7-TM receptor ligand core structure with melanocortin receptor agonist activity

Bioorg Med Chem. 2010 Mar 1;18(5):1822-33. doi: 10.1016/j.bmc.2010.01.049. Epub 2010 Jan 25.

Abstract

Finding small non-peptide molecules for G protein-coupled receptors (GPCR) whose endogenous ligands are peptides, is a very important task for medicinal chemists. Over the years, compounds mimicking peptide structures have been discovered, and scaffolds emulating peptide backbones have been designed. In our work on GPCR ligands, including cholecystokinin receptor-1 (CCKR-1) agonists, we have employed benzodiazepines as a core structure. Looking for ways to reduce molecular weight and possibly improve physical properties of GPCR ligands, we embarked on the search for molecules providing similar scaffolds to the benzodiazepine with lower molecular weight. One of our target core structures was 1,4-dihydro-[1,4]diazepine-5,7-dione. There was not, however, a known synthetic route to such molecules. Here we report the discovery of a simple and concise method for synthesis of 2-[6-(1H-indazol-3-ylmethyl)-5,7-dioxo-4-phenyl-4,5,6,7-tetrahydro-[1,4]diazepin-1-yl]-N-isopropyl-N-phenyl-acetamide as an example of a compound containing the tetrahydrodiazepine-5,7-dione core. Compounds from this series were tested in numerous GPCR assays and demonstrated activity at melanocortin 1 and 4 receptors (MC1R and MC4R). Selected compounds from this series were tested in vivo in Peptide YY (PYY)-induced food intake. Compounds dosed by intracerebroventricular and oral routes reduced PYY-induced food intake and this effect was reversed by the cyclic peptide MC4R antagonist SHU9119.

MeSH terms

  • Administration, Oral
  • Animals
  • Azepines / chemical synthesis*
  • Azepines / chemistry
  • Azepines / pharmacokinetics
  • Benzodiazepines / chemistry
  • Circular Dichroism
  • Eating / drug effects
  • Ligands*
  • Melanocyte-Stimulating Hormones / chemical synthesis*
  • Melanocyte-Stimulating Hormones / chemistry
  • Melanocyte-Stimulating Hormones / pharmacokinetics
  • Peptides / pharmacology
  • Rats
  • Rats, Sprague-Dawley
  • Receptor, Melanocortin, Type 1 / agonists*
  • Receptor, Melanocortin, Type 1 / metabolism
  • Receptor, Melanocortin, Type 4 / agonists*
  • Receptor, Melanocortin, Type 4 / metabolism
  • Receptors, G-Protein-Coupled / agonists*
  • Receptors, G-Protein-Coupled / metabolism
  • Stereoisomerism
  • Structure-Activity Relationship

Substances

  • Azepines
  • Ligands
  • Peptides
  • Receptor, Melanocortin, Type 1
  • Receptor, Melanocortin, Type 4
  • Receptors, G-Protein-Coupled
  • seven-transmembrane G-protein-coupled receptor
  • Benzodiazepines
  • SHU 9119
  • Melanocyte-Stimulating Hormones