Induction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AML

Nat Biotechnol. 2010 Mar;28(3):275-80. doi: 10.1038/nbt.1607. Epub 2010 Feb 14.

Abstract

Cancer stem cells have been proposed to be important for initiation, maintenance and recurrence of various malignancies, including acute myeloid leukemia (AML). We have previously reported that CD34+CD38- human primary AML stem cells residing in the endosteal region of the bone marrow are relatively chemotherapy resistant. Using a NOD/SCID/IL2rgamma(null) mouse model of human AML, we now show that the AML stem cells in the endosteal region are cell cycle quiescent and that these stem cells can be induced to enter the cell cycle by treatment with granulocyte colony-stimulating factor (G-CSF). In combination with cell cycle-dependent chemotherapy, G-CSF treatment significantly enhances induction of apoptosis and elimination of human primary AML stem cells in vivo. The combination therapy leads to significantly increased survival of secondary recipients after transplantation of leukemia cells compared with chemotherapy alone.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Cell Cycle / drug effects*
  • Cell Differentiation / drug effects
  • Disease Models, Animal
  • Dose-Response Relationship, Drug
  • Granulocyte Colony-Stimulating Factor / pharmacology*
  • Humans
  • Immunohistochemistry
  • Kaplan-Meier Estimate
  • Leukemia, Myeloid, Acute / drug therapy*
  • Leukemia, Myeloid, Acute / metabolism
  • Leukemia, Myeloid, Acute / pathology*
  • Mice
  • Mice, SCID
  • Neoplastic Stem Cells / drug effects*
  • Neoplastic Stem Cells / metabolism
  • Neoplastic Stem Cells / pathology*

Substances

  • Granulocyte Colony-Stimulating Factor