Resuscitation with fresh whole blood ameliorates the inflammatory response after hemorrhagic shock

J Trauma. 2010 Feb;68(2):305-11. doi: 10.1097/TA.0b013e3181cb4472.

Abstract

Background: Hemorrhagic shock is the leading cause of potentially preventable death after traumatic injury. Hemorrhage and subsequent resuscitation may result in a dysfunctional systemic inflammatory response and multisystem organ failure, leading to delayed mortality. Clinical evidence supports improved survival and reduced morbidity when fresh blood products are used as resuscitation strategies. We hypothesized that the transfusion of fresh whole blood (FWB) attenuates systemic inflammation and reduces organ injury when compared with conventional crystalloid resuscitation after hemorrhagic shock.

Methods: Male mice underwent femoral artery cannulation and hemorrhage to a systolic blood pressure of 25 mm Hg +/- 5 mm Hg. After 60 minutes, the mice were resuscitated with either FWB or lactated Ringer's solution (LR). Mice were decannulated and killed at intervals for tissue histology, serum cytokine analysis, and vascular permeability studies. Separate groups of mice were followed for survival studies.

Results: When compared with FWB, mice resuscitated with LR required increased resuscitation fluid volume to reach goal systolic blood pressure. When compared with sham or FWB-resuscitated mice, LR resuscitation resulted in increased serum cytokine levels of macrophage inflammatory protein-1alpha, interleukin-6, interleukin-10, macrophage-derived chemokine, KC, and granulocyte macrophage colony stimulating factor as well as increased lung injury and pulmonary capillary permeability. No survival differences were seen between animals resuscitated with LR or FWB.

Conclusions: Resuscitation with LR results in increased systemic inflammation, vascular permeability, and lung injury after hemorrhagic shock. Resuscitation with FWB attenuates the inflammation and lung injury seen with crystalloid resuscitation. These findings suggest that resuscitation strategies using fresh blood products potentially reduce systemic inflammation and organ injury after hemorrhagic shock.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Blood Transfusion
  • Blood*
  • Crystalloid Solutions
  • Cytokines / blood
  • Inflammation / prevention & control
  • Isotonic Solutions
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Resuscitation / methods*
  • Ringer's Lactate
  • Shock, Hemorrhagic / therapy*

Substances

  • Crystalloid Solutions
  • Cytokines
  • Isotonic Solutions
  • Ringer's Lactate