Midline signaling regulates kidney positioning but not nephrogenesis through Shh

Dev Biol. 2010 Apr 15;340(2):518-27. doi: 10.1016/j.ydbio.2010.02.007. Epub 2010 Feb 10.

Abstract

The role of axial structures, especially the notochord, in metanephric kidney development has not been directly examined. Here, we showed that disruption of the notochord and floor plate by diphtheria toxin (DTA)-mediated cell ablation did not disrupt nephrogenesis, but resulted in kidney fusions, resembling horseshoe kidneys in humans. Axial disruptions led to more medially positioned metanephric mesenchyme (MM) in midgestation. However, neither axial disruption nor the ensuing positional shift of the MM affected the formation of nephrons and other structures within the kidney. Response to Shh signaling was greatly reduced in midline cell populations in the mutants. To further ascertain the molecular mechanism underlying these abnormalities, we specifically inactivated Shh in the notochord and floor plate. We found that depleting the axial source of Shh was sufficient to cause kidney fusion, even in the presence of the notochord. These results suggested that the notochord is dispensable for nephrogenesis but required for the correct positioning of the metanephric kidney. Axial Shh signal appears to be critical in conferring the effects of axial structures on kidney positioning along the mediolateral axis. These studies also provide insights into the pathogenesis of horseshoe kidneys and how congenital kidney defects can be caused by signals outside the renal primordia.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Animals, Newborn
  • Body Patterning
  • Diphtheria Toxin / metabolism
  • Diphtheria Toxin / pharmacology
  • Embryo, Mammalian / embryology
  • Embryo, Mammalian / metabolism
  • Embryonic Development
  • Gene Expression Regulation, Developmental*
  • Hedgehog Proteins / genetics
  • Hedgehog Proteins / metabolism*
  • Immunohistochemistry
  • In Situ Hybridization
  • Kidney / embryology*
  • Mesoderm / metabolism
  • Mice
  • Mice, Transgenic
  • Models, Biological
  • Mutation
  • Notochord / cytology
  • Notochord / physiology
  • Signal Transduction*
  • Transgenes

Substances

  • Diphtheria Toxin
  • Hedgehog Proteins
  • Shh protein, mouse