Preliminary Evaluations of a Self-Contained Anthropomorphic Transfemoral Prosthesis

IEEE ASME Trans Mechatron. 2009;14(6):667-676. doi: 10.1109/TMECH.2009.2032688.

Abstract

This paper presents a self-contained powered knee and ankle prosthesis, intended to enhance the mobility of transfemoral amputees. A finite-state based impedance control approach, previously developed by the authors, is used for the control of the prosthesis during walking and standing. Experiments on an amputee subject for level treadmill and overground walking are described. Knee and ankle joint angle, torque, and power data taken during walking experiments at various speeds demonstrate the ability of the prosthesis to provide a functional gait that is representative of normal gait biomechanics. Measurements from the battery during level overground walking indicate that the self-contained device can provide more than 4500 strides, or 9 km, of walking at a speed of 5.1 km/h between battery charges.