Encapsulated subwavelength grating as a quasi-monolithic resonant reflector

Opt Express. 2009 Dec 21;17(26):24334-41. doi: 10.1364/OE.17.024334.

Abstract

For a variety of laser interferometric experiments, the thermal noise of high-reflectivity multilayer dielectric coatings limits the measurement sensitivity. Recently, monolithic high-reflection waveguide mirrors with nanostructured surfaces have been proposed to reduce the thermal noise in interferometric measurements. Drawbacks of this approach are a highly complicated fabrication process and the high susceptibility of the nanostructured surfaces to damage and pollution. Here, we propose and demonstrate a novel quasi-monolithic resonant surface reflector that also avoids the thick dielectric stack of conventional mirrors but has a flat and robust surface. Our reflector is an encapsulated subwavelength grating that is based on silicon. We measured a high reflectivity of 93% for a wavelength of lambda = 1.55 microm under normal incidence. Perfect reflectivities are possible in theory.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer-Aided Design
  • Equipment Design
  • Equipment Failure Analysis
  • Lenses*
  • Light
  • Refractometry / instrumentation*
  • Scattering, Radiation