Stable silver(I) hydride complexes supported by diselenophosphate ligands

Inorg Chem. 2010 Jan 18;49(2):468-75. doi: 10.1021/ic901408n.

Abstract

The first stable structure of silver(I) cluster cations [Ag(8)(mu(4)-H){Se(2)P(OR)(2)}(6)](+) [R = (i)Pr, 1; Et, 2] containing Ag(I)-hydride bridges (Ag-mu-H-Ag) in T symmetry was reported. The clusters having an interstitial hydride were composed of an octanuclear silver core in tetracapped tetrahedral geometry, which was inscribed within a Se(12) icosahedron represented by six dialkyl diselenophosphate ligands in a tetrametallic-tetraconnective (mu(2), mu(2)) bonding mode. The presence of hydride was unequivocally corroborated by both (1)H and (109)Ag NMR spectroscopies of which a nonet in the (1)H NMR spectrum for the hydride resonance coupled with a doublet peak observed in the (109)Ag NMR spectrum clearly suggests that eight silver nuclei are equivalent in the NMR time scale and a fast exchange of the positions between the vertex and capping silver atoms in solution must occur. The hypothesis was also supported by a density functional theory (DFT) investigation on a simplified model [Ag(8)(H)(Se(2)PH(2))(6)](+), which confirmed that the Ag(8)H cubic core of T(h) symmetry may not be formed as it is energetically highly unfavorable (0.67 eV less stable than the T structure).