Application of quantum chemical approximations to environmental problems: prediction of water solubility for nitro compounds

Environ Sci Technol. 2009 Dec 15;43(24):9208-15. doi: 10.1021/es902566b.

Abstract

Water solubility values for 27 nitro compounds with experimentally measured values were computed using the conductor-like screening model for real solvent (COSMO-RS) based on the density functional theory and COSMO technique. We have found that the accuracy of the COSMO-RS approach for prediction of water solubility of liquid nitro compounds is impressively high (the errors are lower than 0.1 LU). However, for some solid nitro compounds, especially nitramines, there is sufficient disagreement between calculated and experimental values. In order to increase the accuracy of predictions the quantitative structure-property relationship (QSPR) part of the COSMO-RS approach has been modified. The solubility values calculated by the modified COSMO-RS method have shown much better agreement with the experimental values (the mean absolute errors are lower than 0.5 LU). Furthermore, this technique has been used for prediction of water solubility for an expanded set of 23 nitro compounds including nitroaromatic, nitramines, nitroanisoles, nitrogen rich compounds, and some their nitroso and amino derivatives with unknown experimental values. The solubility values predicted using the proposed computational technique could be useful for the determination of the environmental fate of military and industrial wastes and the development of remediation strategies for contaminated soils and waters. This predictive capability is especially important for unstable compounds and for compounds that have yet to be synthesized.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Environmental Pollutants / chemistry
  • Models, Chemical*
  • Nitro Compounds / chemistry*
  • Quantum Theory*
  • Solubility
  • Water / chemistry*

Substances

  • Environmental Pollutants
  • Nitro Compounds
  • Water