Anomalous mercury isotopic compositions of fish and human hair in the Bolivian Amazon

Environ Sci Technol. 2009 Dec 1;43(23):8985-90. doi: 10.1021/es9019518.

Abstract

We report mercury (Hg) mass-dependent isotope fractionation (MDF) and mass-independent isotope fractionation (MIF) in hair samples of the Bolivian Esse Ejjas native people and in several tropical fish species that constitute their daily diet. MDF with delta(202)Hg ranging from -0.40 to -0.92 per thousand for fish and +1.04 to +1.42 per thousand for hair was observed. Hair samples of native people with a fish-dominated diet are enriched by +2.0 +/- 0.2 per thousand in delta(202)Hg relative to the fish consumed. Both odd Hg isotopes, (199)Hg and (201)Hg, display MIF in fish (from -0.14 to +0.38 per thousand for Delta(201)Hg and from -0.09 to +0.55 per thousand for Delta(199)Hg) and in hair (from +0.12 to +0.66 per thousand for Delta(201)Hg and from +0.14 to +0.81 per thousand for Delta(199)Hg). No significant difference in MIF anomalies is observed between Hg in fish and in human hair, suggesting that the anomalies act as conservative source tracers between upper trophic levels of the tropical food chain. Fish Hg MIF anomalies are 10-fold lower than those published for fish species from midlatitude lakes. Grouping all Amazonian fish species per location shows that Delta(199)Hg:Delta(201)Hg regression slopes for the clear water Itenez River basin (0.95 +/- 0.08) are significantly lower than those for the white water Beni River basin (1.28 +/- 0.12). Assuming that the observed MIF originates from aquatic photoreactions, we calculated limited photodemethylation of monomethylmercury (MMHg) in the Beni River floodplains and insignificant photodemethylation in the Itenez River floodplains. This is possibly related to lower residence times of MMHg in the Itenez compared to the Beni River floodplains. Finally, a significantly negative Delta(201)Hg of -0.14 per thousand in Beni River fish suggests that the inorganic Hg precursor to the MMHg that bioaccumulates up the food chain defines an ecosystem specific non-zero Delta(201)Hg baseline. Calculation of photodemethylation intensities from Hg or MMHg MIF, therefore, requires a baseline correction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Distribution
  • Aging / metabolism
  • Animals
  • Bolivia
  • Chemical Fractionation
  • Ecosystem*
  • Environmental Monitoring*
  • Fishes / metabolism*
  • Geography
  • Hair / chemistry*
  • Humans
  • Light
  • Mercury / analysis*
  • Mercury Isotopes
  • Methylmercury Compounds / analysis
  • Oxidation-Reduction / radiation effects
  • Population Groups
  • Rivers / chemistry

Substances

  • Mercury Isotopes
  • Methylmercury Compounds
  • Mercury