Ca(2+)-modulated vision-linked ROS-GC guanylate cyclase transduction machinery

Mol Cell Biochem. 2010 Jan;334(1-2):105-15. doi: 10.1007/s11010-009-0330-z. Epub 2009 Nov 27.

Abstract

Vertebrate phototransduction depends on the reciprocal relationship between two-second messengers, cyclic GMP and Ca(2+). The concentration of both is reciprocally regulated including the dynamic synthesis of cyclic GMP by a membrane bound guanylate cyclase. Different from hormone receptor guanylate cyclases, the cyclases operating in phototransduction are regulated by the intracellular Ca(2+)-concentration via small Ca(2+)-binding proteins. Based on the site of their expression and their Ca(2+) modulation, this sub-branch of the cyclase family was named sensory guanylate cyclases, of which the retina specific forms are named ROS-GCs (rod outer segment guanylate cyclases). This review focuses on the structure and function of the ROS-GC subfamily present in the mammalian retinal neurons: photoreceptors and inner layers of the retinal neurons. Portions and excerpts of the review are from a previous chapter (Curr Top Biochem Res 6:111-144, 2004).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Calcium Signaling
  • Guanylate Cyclase / physiology*
  • Humans
  • Light Signal Transduction*
  • Retinal Neurons / enzymology
  • Rod Cell Outer Segment / enzymology
  • Vision, Ocular

Substances

  • Guanylate Cyclase