Biopatterning for label-free detection

Colloids Surf B Biointerfaces. 2010 Mar 1;76(1):375-80. doi: 10.1016/j.colsurfb.2009.10.041. Epub 2009 Nov 1.

Abstract

We present a biopatterning technique suitable for applications which demand a high degree of surface cleanliness, such as immobilization of biological recognition elements onto label-free biosensors. In the case of label-free biosensing, the mechanism of signal transduction is based on surface bound matter, making them highly sensitive to surface contamination including residues left during the biopatterning process. In this communication we introduce a simple, rapid processing step that removes 98% of the residues that often remain after standard parylene lift-off patterning. Residue-free parylene biopatterning is combined with microfluidics to localize biomolecule immobilization onto the sensing region and to enable multiplexed biopatterning. We demonstrate the applicability of this method to multiplexed label-free detection platforms by patterning nucleic acid capture probes corresponding to the four different serotypes of Dengue virus onto parallel 1D photonic crystal resonator sensors. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) are used to quantify surface cleanliness and uniformity. In addition to label-free biosensors, this technique is well suited to other nanobiotechnology patterning applications which demand a pristine, residue-free surface, such as immobilization of enzymes, antibodies, growth factors, or cell cultures.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biosensing Techniques* / methods
  • Microscopy, Electron, Scanning
  • Polymers / chemistry
  • Xylenes / chemistry

Substances

  • Polymers
  • Xylenes
  • parylene