Asymmetric autocatalysis induced by chiral crystals of achiral tetraphenylethylenes

Orig Life Evol Biosph. 2010 Feb;40(1):65-78. doi: 10.1007/s11084-009-9183-4. Epub 2009 Nov 13.

Abstract

The achiral hydrocarbon tetraphenylethylene crystallizes in enantiomorphous forms (chiral space group: P2(1)) to afford right- and left-handed hemihedral crystals, which can be recognized by solid-state circular dichroism spectroscopic analysis. Chiral organic crystals of tetraphenylethylene mediated enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde to give, in conjunction with asymmetric autocatalysis with amplification of chirality, almost enantiomerically pure (S)- and (R)-5-pyrimidyl alkanols whose absolute configurations were controlled efficiently by the crystalline chirality of the tetraphenylethylene substrate. Tetrakis(p-chlorophenyl)ethylene and tetrakis(p-bromophenyl)ethylene also show chirality in the crystalline state, which can also act as a chiral substrate and induce enantioselectivity of diisopropylzinc addition to pyrimidine-5-carbaldehyde in asymmetric autocatalysis to give enantiomerically enriched 5-pyrimidyl alkanols with the absolute configuration correlated with that of the chiral crystals. Highly enantioselective synthesis has been achieved using chiral crystals composed of achiral hydrocarbons, tetraphenylethylenes, as chiral inducers. This chemical system enables significant amplification of the amount of chirality using spontaneously formed chiral crystals of achiral organic compounds as the seed for the chirality of asymmetric autocatalysis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Crystallization
  • Ethylenes / chemistry*
  • Molecular Structure
  • Stereoisomerism*

Substances

  • Ethylenes
  • ethylene