Electronic states of CuPc chains on the Au(110) surface

J Chem Phys. 2009 Nov 7;131(17):174710. doi: 10.1063/1.3257606.

Abstract

The electronic properties of Cu-phthalocyanine (CuPc) molecules flat lying along the channels of the Au(110) reconstructed surface have been investigated by means of ultraviolet and x-ray photoelectron spectroscopy. The ordered chains give rise to a highly ordered single-layer structure with a (5x3) symmetry. Although from the core-level analysis not any significant charge transfer between the molecules and the underlying Au surface is observed, the valence band photoemission data bring to light CuPc-induced features localized at the interface. In particular, energy versus momentum dispersion of an interface state reveals a bandwidth of about 90 meV along the enlarged Au channels, where the CuPc chains are formed, with a defined fivefold symmetry well fitting the CuPc intermolecular distance.