Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger "AlSAP" gene isolated from the halophyte grass Aeluropus littoralis

Plant Mol Biol. 2010 Jan;72(1-2):171-90. doi: 10.1007/s11103-009-9560-4. Epub 2009 Oct 17.

Abstract

We describe here the isolation of a novel gene, designated AlSAP, from A. littoralis in a first step to exploit the potential of this halophyte grass as a genetic resource to improve salt and drought tolerance in plants and, particularly, in cereals. The Aeluropus genome contains a single AlSAP gene which has an intron at its 5'UTR. Sequence homology analysis showed that the AlSAP protein is characterized by the presence of two conserved zinc-finger domains A20 and AN1. AlSAP is induced not only by various abiotic stresses such as salt, osmotic, heat and cold but, also by abscisic acid (ABA) and salicylic acid (SA). Tobacco plants expressing the AlSAP gene under the control of the duplicated CaMV35S promoter exhibited an enhanced tolerance to abiotic stresses such as salinity (350 mM NaCl), drought (soil Relative Water Content (RWC) = 25%), heat (55 degrees C for 2.5 h) and freezing (-20 degrees C for 3 h). Moreover, under high salt and drought conditions, the transgenic plants were able to complete their life cycle and to produce viable seeds while the wild-type plants died at the vegetative stage. Measurements of the leaf RWC and of the root and leaf endogenous Na(+) and K(+) levels in AlSAP transgenic lines compared to wild-type tobacco, showed an evident lower water loss rate and a higher Na(+) accumulation in senescent-basal leaves, respectively. Finally, we found that the steady state levels of transcripts of eight stress-related genes were higher in AlSAP transgenic lines than in wild-type tobacco. Taken together, these results show that AlSAP is a potentially useful candidate gene for engineering drought and salt tolerance in cultivated plants.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Droughts*
  • Nicotiana / drug effects*
  • Nicotiana / genetics*
  • Nicotiana / physiology
  • Phylogeny
  • Plant Proteins / classification
  • Plant Proteins / genetics
  • Plant Proteins / physiology*
  • Plants, Genetically Modified / drug effects*
  • Plants, Genetically Modified / genetics*
  • Plants, Genetically Modified / physiology
  • Poaceae / genetics*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Salt-Tolerant Plants / genetics*
  • Sodium Chloride / toxicity

Substances

  • Plant Proteins
  • Sodium Chloride