Implications of reactor type and conditions on first-order hydrolysis rate assessment of maize silage

Water Sci Technol. 2009;60(7):1829-36. doi: 10.2166/wst.2009.549.

Abstract

The biodegradability and first-order hydrolysis coefficient of maize silage have been assessed from batch experiments using different types of inoculum and substrate to inocula (S/I) ratios, and from CSTRs working at different hydraulic retention times (HRTs). In the batch experiments, the assessed maximum biodegradability of the maize silage was 68 (+/-2.7)% and 73(+/-2.9)% while the first order hydrolysis was 0.26 (+/-0.01) and 0.27(+/-0.02) d(-1), using granular and a mixture of granular and suspended inoculum, respectively. In the CSTR experiment biodegradability ranged from 41-65% depending on the HRT applied whereas the calculated first order hydrolysis coefficient was 0.32 d(-1). It is concluded that batch experiments can be used to assess first order hydrolysis constants and biodegradability provided that a well balanced inoculum is guaranteed. Further, it is shown that CSTR reactors digesting maize silage and operating at HRTs as low as 20 days can attain 88% of maximum biodegradability as long as pH fluctuations are minimized. 2 mmol NaHCO3 per gram maize silage was calculated to suffice for the purpose.

MeSH terms

  • Biodegradation, Environmental
  • Hydrolysis
  • Kinetics
  • Silage / analysis*
  • Zea mays / chemistry*