Laser-filament-induced corona discharges and remote measurements of electric fields

Opt Lett. 2009 Oct 1;34(19):2964-6. doi: 10.1364/OL.34.002964.

Abstract

Femtosecond laser pulses were used to make plasma filaments near an isolated positively or negatively highly biased electrode. The electrode was well positioned to sustain a high voltage up to U(max)=+/-400 kV to avoid the induced breakdown or a glow discharge; the shape of the electrode was chosen to reduce the corona effects at the maximal voltage. The filament's UV emission is shown to be very sensitive to the voltage applied: it increases nonlinearly with the electrode potential. Along with nanosecond filament-induced flashes at both polarities, long, about a half microsecond, corona flashes were observed at the negative polarity.