Charge implantation measurement on electron-irradiated insulating materials by means of an SEM technique

Microsc Microanal. 2004 Dec;10(6):697-710. doi: 10.1017/s1431927604040644.

Abstract

The goal of this article is first to review the charging effects occurring when an insulating material is subjected to electron irradiation in a scanning electron microscope (SEM) and next their consequences from both scanning electron microscopy and electron probe microanalysis (EPMA) points of view. When bare insulators are observed, the so-called pseudo mirror effect leads to an anomalous contrast and also to an erroneous surface potential, V(S), measurement when a Duane-Hunt limit (DHL) method is used. An alternative possibility is to use an electron toroidal spectrometer (ETS), specially adapted to a SEM, which directly gives the V(S) value. In the case of a bulk specimen coated with a grounded layer, although the layer prevents external effects of the trapped charge, the electric field beneath the coating is reinforced and leads to loss of ionizations that reduces the number of generated X-ray photons. To take into account both effects mentioned above, whether the studied insulator is coated or not, a method is proposed to deduce the trapped charge inside the insulator and the corresponding internal or external electric field.