Oligomeric tectonics: supramolecular assembly of double-stranded oligobisnorbornene through pi-pi stacking

Chemistry. 2009 Nov 2;15(43):11594-600. doi: 10.1002/chem.200901634.

Abstract

Self-assembly at the molecular level in solutions or on a surface is a subject of current interest. Herein we describe the tailoring of oligobisnorbornene 1, which represents an innovative concept of a preorganized building block on the tens of nanometer scale. The rodlike 1 has vinyl and styrenyl end groups. Scanning tunneling microscopy (STM) reveals that the oligomers aggregate anisotropically along the long axis and form a one-dimensional assembly in which, remarkably, no interstitial gap appears between neighboring oligomers. Dynamic light-scattering (DLS) measurements indicate that the assembly develops in solution. With a shear treatment for dropcast films, a unidirectionally ordered domain with a defect density less than 0.5 % can be prepared. Simulation results by molecular dynamics suggest that there may be multiple interactions such as pi-pi stacking and dipolar attractions taking place between the termini of the oligomers. To demonstrate the importance of double bonds in the oligomeric backbones and termini towards the tectonic assembly, a hydrogenated analogue was synthesized; pi-pi interactions are thus less significant and the film morphology is completely different from that of 1. This work extends the concept of molecular tectonics to preorganized oligomers and opens up a new avenue of nanopatterning toward nanodevices.