Protein dynamics investigated by neutron scattering

Photosynth Res. 2009 Nov-Dec;102(2-3):281-93. doi: 10.1007/s11120-009-9480-9. Epub 2009 Sep 11.

Abstract

This contribution describes incoherent quasielastic neutron scattering (QENS) as a suitable tool for investigations of protein dynamics with special emphasis on applications in photosynthesis research. QENS characterizes protein dynamics via the measurement of energy and momentum exchange between sample system and incident low-energy neutrons (1 meV<E<20 meV). This method is especially sensitive for picosecond motions of hydrogen atoms because it makes use of the exceptionally large incoherent neutron scattering cross section of protons and their almost homogeneous distribution in proteins. After a short introduction into the basic principles of neutron scattering, a more detailed description of QENS will be presented including a short overview on instrumentation and theory. Recent QENS results will be discussed for the antenna complex LHC II and PS II membrane fragments. It is shown that diffusive protein dynamics is indispensable for enabling Q(A)(-·) reoxidation by Q(B) at temperatures above 240 K, which explains the strong dependence of this electron transfer step on temperature and hydration level of the sample. Finally, a new laser-QENS pump-probe technique will be introduced which permits in situ monitoring of protein dynamics correlated with a change of the functional state of the sample, i.e. a direct observation of structure-dynamics-function relationships in real time.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Elasticity
  • Neutron Diffraction / methods*
  • Proteins / chemistry*

Substances

  • Proteins