Involvement of ionizable groups in catalysis of human liver glycolate oxidase

J Biol Chem. 2009 Nov 6;284(45):31214-22. doi: 10.1074/jbc.M109.040063. Epub 2009 Sep 16.

Abstract

Glycolate oxidase is a flavin-dependent, peroxisomal enzyme that oxidizes alpha-hydroxy acids to the corresponding alpha-keto acids, with reduction of oxygen to H(2)O(2). In plants, the enzyme participates in photorespiration. In humans, it is a potential drug target for treatment of primary hyperoxaluria, a genetic disorder where overproduction of oxalate results in the formation of kidney stones. In this study, steady-state and pre-steady-state kinetic approaches have been used to determine how pH affects the kinetic steps of the catalytic mechanism of human glycolate oxidase. The enzyme showed a Ping-Pong Bi-Bi kinetic mechanism between pH 6.0 and 10.0. Both the overall turnover of the enzyme (k(cat)) and the rate constant for anaerobic substrate reduction of the flavin were pH-independent at pH values above 7.0 and decreased slightly at lower pH, suggesting the involvement of an unprotonated group acting as a base in the chemical step of glycolate oxidation. The second-order rate constant for capture of glycolate (k(cat)/K(glycolate)) and the K(d)((app)) for the formation of the enzyme-substrate complex suggested the presence of a protonated group with apparent pK(a) of 8.5 participating in substrate binding. The k(cat)/K(oxygen) values were an order of magnitude faster when a group with pK(a) of 6.8 was unprotonated. These results are discussed in the context of the available three-dimensional structure of GOX.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Alcohol Oxidoreductases / chemistry*
  • Alcohol Oxidoreductases / genetics
  • Alcohol Oxidoreductases / metabolism
  • Catalysis
  • Enzyme Stability
  • Flavins / chemistry
  • Humans
  • Kinetics
  • Liver / chemistry
  • Liver / enzymology*
  • Oxidation-Reduction
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism

Substances

  • Flavins
  • Recombinant Proteins
  • Alcohol Oxidoreductases
  • glycollate oxidase