Influence of fluorine atoms and aromatic rings on the acidity of ethanol

J Phys Chem A. 2009 Oct 8;113(40):10753-8. doi: 10.1021/jp810475z.

Abstract

Absolute gas-phase acidities Delta(acid)G(0)(OH) and Delta(acid)G(0)(CH) were calculated at the B3LYP and MP2 levels using six different standard basis sets for the OH and CH heterolytic bond cleavage of ethanol and twelve derivatives of the type CH(3-n)F(n)CHX(r)OH, where n ranges from zero to three and represents the number of fluorine atoms and r represents hydrogen and the type of aromatic ring, namely: X(0) = hydrogen, X(1) = phenyl, X(2) = 1-naphthyl, and X(3) = 9-anthryl. The similarity between calculated and experimental Delta(acid)G(0)(OH) values for ethanol (1a), 2-fluoroethanol (1b), 2,2-difluoroethanol (1c), 2,2,2-trifluoroethanol (1d), and 1-phenylethanol (2a) was used to validate the right theoretical method for this study. Substituent partial contributions to hydroxyl-, methylene-, and methine-hydrogen acidities were evaluated by linear combination. Good parameter fittings of the primary and secondary alcohols were obtained and interpreted as additive contribution of the substituent effects. The nonlinear contributions were identified. Calculations prove that fluoroalcohols exhibit C-H acidity, which is usually lower than O-H acidity. In principle, the inversion of this acidity order is possible by the introduction of a large aromatic ring instead to increase the number of fluorine atoms.