The analysis of population survey data on DNA sequence variation

Mol Biol Evol. 1990 Jul;7(4):377-94. doi: 10.1093/oxfordjournals.molbev.a040607.

Abstract

A technique is presented for the partitioning of nucleotide diversity into within- and between-population components for the case in which multiple populations have been surveyed for restriction-site variation. This allows the estimation of an analogue of FST at the DNA level. Approximate expressions are given for the variance of these estimates resulting from nucleotide, individual, and population sampling. Application of the technique to existing studies on mitochondrial DNA in several animal species and on several nuclear genes in Drosophila indicates that the standard errors of genetic diversity estimates are usually quite large. Thus, comparative studies of nucleotide diversity need to be substantially larger than the current standards. Normally, only a very small fraction of the sampling variance is caused by sampling of individuals. Even when 20 or so restriction enzymes are employed, nucleotide sampling is a major source of error, and population sampling is often quite important. Generally, the degree of population subdivision at the nucleotide level is comparable with that at the haplotype level, but significant differences do arise as a result of inequalities in the genetic distances between haplotypes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Base Sequence
  • DNA / genetics*
  • Drosophila / genetics
  • Genetic Variation*
  • Humans
  • Polymorphism, Restriction Fragment Length*

Substances

  • DNA