Ion segregation and deliquescence of alkali halide nanocrystals on SiO2

J Phys Chem A. 2009 Sep 3;113(35):9715-20. doi: 10.1021/jp904151m.

Abstract

The adsorption of water on alkali halide (KBr, KCl, KF, NaCl) nanocrystals on SiO2 and their deliquescence was investigated as a function of relative humidity (RH) from 8% to near saturation by scanning polarization force microscopy. At low humidity, water adsorption solvates ions at the surface of the crystals and increases their mobility. This results in a large increase in the dielectric constant, which is manifested in an increase in the electrostatic force and in an increase in the apparent height of the nanocrystals. Above 58% RH, the diffusion of ions leads to Ostwald ripening, where larger nanocrystals grow at the expense of the smaller ones. At the deliquescence point, droplets were formed. For KBr, KCl, and NaCl, the droplets exhibit a negative surface potential relative to the surrounding region, which is indicative of the preferential segregation of anions to the air/solution interface.