The effects of accelerated carbonation on CO(2) uptake and metal release from incineration APC residues

Waste Manag. 2009 Dec;29(12):2994-3003. doi: 10.1016/j.wasman.2009.07.012. Epub 2009 Aug 22.

Abstract

This work presents the results of a study on accelerated carbonation of incinerator air pollution control residues, with a particular focus on the modifications in the leaching behaviour of the ash. Aqueous carbonation experiments were carried out using 100% CO(2) at different temperatures, pressures and liquid-to-solid ratios, in order to assess their influence on process kinetics, CO(2) uptake and the leaching behaviour of major and trace elements. The ash showed a particularly high reactivity towards CO(2), owing to the abundance of calcium hydroxides phases, with a maximum CO(2) uptake of approximately 250g/kg. The main effects of carbonation on trace metal leaching involved a significant decrease in mobility for Pb, Zn and Cu at high pH values, a slight change or mobilization for Cr and Sb, and no major effects on the release of As and soluble salts. Geochemical modelling of leachates indicated solubility control by different minerals after carbonation. In particular, in the stability pH range of carbonates, solubility control by a number of metal carbonates was clearly suggested by modelling results. These findings indicate that accelerated carbonation of incinerator ashes has the potential to convert trace contaminants into sparingly soluble carbonate forms, with an overall positive effect on their leaching behaviour.

MeSH terms

  • Air Pollution / prevention & control
  • Carbon Dioxide / chemistry*
  • Hazardous Waste / analysis*
  • Incineration
  • Kinetics
  • Metals, Heavy / analysis*
  • Models, Chemical

Substances

  • Hazardous Waste
  • Metals, Heavy
  • Carbon Dioxide