Nature versus nurture in determining athletic ability

Med Sport Sci. 2009:54:11-27. doi: 10.1159/000235694. Epub 2009 Aug 17.

Abstract

This chapter provides an overview of the truism that both nature and nurture determine human athletic ability. The major thesis developed is that environmental effects work through the process of growth and development and interact with an individual's genetic background to produce a specific adult phenotype, i.e. an athletic or nonathletic phenotype. On the nature side (genetics), a brief historical review is provided with emphasis on several areas that are likely to command future attention including the rise of genome-wide association as a mapping strategy, the problem of false positives using association approaches, as well as the relatively unknown effects of gene-gene interaction(epistasis), gene-environment interaction, and genome structure on complex trait variance. On the nurture side (environment), common environmental effects such as training-level and sports nutrition are largely ignored in favor of developmental environmental effects that are channeled through growth and development processes. Developmental effects are difficult to distinguish from genetic effects as phenotypic plasticity in response to early life environmental perturbation can produce lasting effects into adulthood. In this regard, the fetal programming (FP) hypothesis is reviewed in some detail as FP provides an excellent example of how developmental effects work and also interact with genetics. In general, FP has well-documented effects on adult body composition and the risk for adult chronic disease, but there is emerging evidence that FP affects human athletic performance as well.

MeSH terms

  • Animals
  • Athletic Performance*
  • Birth Weight
  • Body Composition
  • Diet
  • Energy Metabolism
  • Environment*
  • Genes
  • Genetic Phenomena*
  • Humans
  • Muscle Strength