Characterization of desnutrin functional domains: critical residues for triacylglycerol hydrolysis in cultured cells

J Lipid Res. 2010 Feb;51(2):309-17. doi: 10.1194/jlr.M000729. Epub 2009 Aug 19.

Abstract

Murine desnutrin/human ATGL is a triacylglycerol (TAG) hydrolase with a predicted catalytic dyad within an alpha-beta hydrolase fold in the N-terminal region. In humans, mutations resulting in C-terminal truncation cause neutral lipid storage disease with myopathy. To identify critical functional domains, we measured TAG breakdown in cultured cells by mutated or truncated desnutrin. In vitro, C-terminally truncated desnutrin displayed an even higher apparent V(max) than the full-length form without changes in K(m), which may be explained by our finding of an interaction between the C- and N-terminal domains. In live cells, however, C-terminally truncated adenoviral desnutrin had lower TAG hydrolase activity. We investigated a role for the phosphorylation of C-terminal S406 and S430 residues but found that these were not necessary for TAG breakdown or lipid droplet localization in cells. The predicted N-terminal active sites, S47 and D166, were both critical for TAG hydrolysis in live cells and in vitro. We also identified two overlapping N-terminal motifs that predict lipid substrate binding domains, a glycine-rich motif (underlined) and an amphipathic alpha-helix (bold) within amino acid residues 10-24 (ISFAGCGFLGVYHIG). G14, F17, L18, and V20, but not G16 and G19, were important for TAG hydrolysis, suggesting a potential role for the amphipathic alpha-helix in TAG binding. This study identifies for the first time critical sites in the N-terminal region of desnutrin and reveals the requirement of the C-terminal region for TAG hydrolysis in cultured cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • COS Cells
  • Carboxylic Ester Hydrolases / chemistry*
  • Carboxylic Ester Hydrolases / genetics
  • Carboxylic Ester Hydrolases / metabolism*
  • Chlorocebus aethiops
  • Humans
  • Hydrolysis
  • Lipase / chemistry
  • Lipase / genetics
  • Lipase / metabolism
  • Mice
  • Molecular Sequence Data
  • Phosphorylation
  • Protein Structure, Tertiary
  • Sequence Deletion
  • Triglycerides / metabolism*

Substances

  • Triglycerides
  • Carboxylic Ester Hydrolases
  • Lipase
  • PNPLA2 protein, mouse