Mapping quantitative trait loci for preharvest sprouting resistance in white wheat

Theor Appl Genet. 2009 Nov;119(7):1223-35. doi: 10.1007/s00122-009-1123-1. Epub 2009 Aug 9.

Abstract

The premature germination of seeds before harvest, known as preharvest sprouting (PHS), is a serious problem in all wheat growing regions of the world. In order to determine genetic control of PHS resistance in white wheat from the relatively uncharacterized North American germplasm, a doubled haploid population consisting of 209 lines from a cross between the PHS resistant variety Cayuga and the PHS susceptible variety Caledonia was used for QTL mapping. A total of 16 environments were used to detect 15 different PHS QTL including a major QTL, QPhs.cnl-2B.1, that was significant in all environments tested and explained from 5 to 31% of the trait variation in a given environment. Three other QTL QPhs.cnl-2D.1, QPhs.cnl-3D.1, and QPhs.cnl-6D.1 were detected in six, four, and ten environments, respectively. The potentially related traits of heading date (HD), plant height (HT), seed dormancy (DOR), and rate of germination (ROG) were also recorded in a limited number of environments. HD was found to be significantly negatively correlated with PHS score in most environments, likely due to a major HD QTL, QHd.cnl-2B.1, found to be tightly linked to the PHS QTL QPhs.cnl-2B.1. Using greenhouse grown material no overlap was found between seed dormancy and the four most consistent PHS QTL, suggesting that greenhouse environments are not representative of field environments. This study provides valuable information for marker-assisted breeding for PHS resistance, future haplotyping studies, and research into seed dormancy.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chromosome Mapping*
  • Chromosomes, Plant
  • Crosses, Genetic
  • Environment
  • Germination / genetics*
  • Haploidy
  • Polyploidy
  • Quantitative Trait Loci*
  • Seeds / genetics*
  • Triticum / genetics*