RNAi for the large non-coding hsromega transcripts suppresses polyglutamine pathogenesis in Drosophila models

RNA Biol. 2009 Sep-Oct;6(4):464-78. doi: 10.4161/rna.6.4.9268. Epub 2009 Sep 17.

Abstract

Polyglutamine diseases are a class of inherited neurodegenerative disorders, characterized by expansion of CAG trinucleotide repeats translated into elongated glutamine tracts within the mutant proteins. Overexpression of the non-coding hsromega transcripts has been shown to dominantly enhance polyQ induced cytotoxicity in Drosophila. In the present study we demonstrate that RNA interference mediated downregulation of hsromega-n transcripts is sufficient to suppress pathogenesis in several Drosophila models of human polyQ neurodegenerative diseases. Loss of hsromega-n RNA not only suppresses the eye-specific degeneration mediated by GMR-GAL4 driven expression of the 127Q or MJDtr-Q78 or ataxin1 82Q or httex1p Q93 transgene, but also rescues premature death of flies expressing the expanded polyQ proteins pan-neuronally using the elav-GAL4 driver. We further demonstrate that the morphological and functional rescue of polyQ toxicity observed upon hsromega-n RNAi is associated with substantial reduction of polyQ protein aggregation without affecting transcription of the 127Q transgene. Unlike in the polyQ expressing cells, co-expression of hsromega-n RNAi also abolishes the induction of Hsp70. These results suggest that the hsromega transcripts have a role in early stages of polyQ aggregate formation. Interestingly, hsromega-RNAi has, at best, only a marginal effect on neuropathy following overexpression of normal or mutant tau protein in flies. Functional analogues of the large non-coding hsromega transcripts in human thus appear to be promising candidates as therapeutic targets for the polyQ-mediated neurodegenerative diseases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Animals
  • Cell Nucleus / drug effects
  • Cell Nucleus / genetics
  • Disease Models, Animal
  • Down-Regulation / drug effects
  • Drosophila Proteins / chemistry
  • Drosophila Proteins / genetics*
  • Drosophila melanogaster / drug effects
  • Drosophila melanogaster / genetics*
  • Eye / drug effects
  • Eye / pathology
  • Eye / ultrastructure
  • Nervous System / drug effects
  • Nervous System / pathology
  • Neurodegenerative Diseases / pathology*
  • Peptides / toxicity*
  • Protein Structure, Quaternary
  • RNA Interference* / drug effects
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • RNA, Untranslated / genetics*
  • Transcription, Genetic / drug effects
  • Transgenes / genetics

Substances

  • Drosophila Proteins
  • Peptides
  • RNA, Messenger
  • RNA, Untranslated
  • polyglutamine