Effect of the Co-C(C60(-)) bond formation on magnetic properties of the ionic complex {cryptand[2,2,2] x (Na+)} x {Co(II)TPP x (C60(-))} x (C6H4Cl2)2

Dalton Trans. 2009 Aug 28:(32):6416-20. doi: 10.1039/b904293h. Epub 2009 Jun 30.

Abstract

A new ionic complex {cryptand[2,2,2] x (Na(+))} x {Co(II)TPP x (C(60)(-))} x (C(6)H(4)Cl(2))(2) has been obtained as single crystals by a diffusion technique. It involves coordination {Co(II)TPP x u(C(60)(-))} units and bulky {cryptand[2,2,2] x (Na(+))} cations. The Co-C(C(60)(-)) coordination bond is short (2.262(2) A at 100 K) which provides ordering in the C(60)(-) anions. This is the first ordered structure of {Co(II)TPP x (C(60)(-))}. The coordination bonds weaken upon heating to be 2.316(4) A at 250 K. As a result, the C(60)(-) anions begin to rotate at 250 K about the Co-C bond between two orientations. The complex is diamagnetic from 4 up to 320 K. The Co-C bonds dissociate above 320 K only to form unbound paramagnetic Co(II)TPP and C(60)(*-) species. The process is accompanied by the reversible increase in magnetic susceptibility of the complex and the appearance of a new broad EPR signal with g = 2.1187 and a linewidth of approximately 120 mT (350 K). The signal was attributed to both paramagnetic Co(II)TPP and C(60)(*-), which showed strong exchange interaction.