Mapping the local protein interactome of the NuA3 histone acetyltransferase

Protein Sci. 2009 Sep;18(9):1987-97. doi: 10.1002/pro.212.

Abstract

Protein-protein interactions modulate cellular functions ranging from the activity of enzymes to signal transduction cascades. A technology termed transient isotopic differentiation of interactions as random or targeted (transient I-DIRT) is described for the identification of stable and transient protein-protein interactions in vivo. The procedure combines mild in vivo chemical cross-linking and non-stringent affinity purification to isolate low abundance chromatin-associated protein complexes. Using isotopic labeling and mass spectrometric readout, purified proteins are categorized with respect to the protein 'bait' as stable, transient, or contaminant. Here we characterize the local interactome of the chromatin-associated NuA3 histone lysine-acetyltransferase protein complex. We describe transient associations with the yFACT nucleosome assembly complex, RSC chromatin remodeling complex and a nucleosome assembly protein. These novel, physical associations with yFACT, RSC, and Nap1 provide insight into the mechanism of NuA3-associated transcription and chromatin regulation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatin / metabolism
  • Formaldehyde
  • Gene Expression Regulation, Fungal
  • Histone Acetyltransferases / genetics
  • Histone Acetyltransferases / metabolism*
  • Protein Interaction Mapping / methods*
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism*

Substances

  • Chromatin
  • Saccharomyces cerevisiae Proteins
  • Formaldehyde
  • Histone Acetyltransferases