Mucoadhesive liposomes for intranasal immunization with an avian influenza virus vaccine in chickens

Biomaterials. 2009 Oct;30(29):5862-8. doi: 10.1016/j.biomaterials.2009.06.046. Epub 2009 Jul 15.

Abstract

The aim of this study was to characterize a nasally delivered bioadhesive liposome using an inactivated H5N3 virus as a model antigen. Bioadhesive liposomes were developed using tremella (T) or xanthan gum (XG) as the bioadhesive polysaccharide. Using chickens as the target animal, we evaluated whether delivery of a bioadhesive liposomal influenza vaccine via a mucosal site of infection could improve vaccine effectiveness. 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cytotoxicity assays demonstrated that T, XG and liposomes were non toxic to chicken spleen macrophages. Enzyme-linked immunosorbent assay (ELISA) was used to determine the adjuvant effect of the bioadhesive liposomal-vaccines. Chickens immunized with a low dose (200 microL) of bioadhesive liposomal influenza vaccine had significantly higher mucosal and serum antibody levels (P<0.05). In addition, liposomes mixed with a low-viscosity bioadhesive gel used for nasal delivery resulted in superior antibody responses compared with liposomes mixed with a high-viscosity gel (P<0.05). This suggest that a low-viscosity gel mixed with liposomes is more suitable for nasal delivery, and that chickens elicit higher mucosal secretory immunoglobulin A (s-IgA) and serum IgG after two vaccinations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adhesiveness
  • Administration, Intranasal
  • Animals
  • Biocompatible Materials / chemistry
  • Chickens
  • Influenza A virus / immunology*
  • Influenza Vaccines / administration & dosage*
  • Influenza Vaccines / chemistry
  • Influenza Vaccines / immunology*
  • Influenza in Birds / immunology*
  • Influenza in Birds / prevention & control*
  • Liposomes / chemistry*
  • Materials Testing
  • Nasal Mucosa / chemistry*
  • Nasal Mucosa / immunology
  • Treatment Outcome

Substances

  • Biocompatible Materials
  • Influenza Vaccines
  • Liposomes