The use of a diode matrix in commissioning activities for electron energies > or = 9 MeV: a feasibility study

Med Phys. 2009 Apr;36(4):1144-54. doi: 10.1118/1.3081414.

Abstract

The contribution of a commercially available diode matrix (MapCHECK, provided by Sun Nuclear, Melbourne, FL) for the commissioning procedures of the voxel based Monte Carlo (VMC++) algorithm for electron beams of MasterPlan treatment planning system was investigated. The attention is mainly focused on the calculation in homogeneous and heterogeneous phantoms. With this aim, following a data set similar to that proposed by Electron Collaborative Working Group (ECWG), the dose profiles and two-dimensional (2D) dose distributions measured by the diode matrix were compared with the calculated ones using the gamma analysis method with acceptance criteria for the dose difference and the distance to agreement equal to 4% and 4 mm, respectively. The average and standard deviation of the percentage of points satisfying the constraint gamma < or = 1 are 98.3 +/- 4.1% and 99.3 +/- 1.7% for the 9 and 12 MeV electron beam, respectively, showing that the accuracy of MasterPlan electron beam algorithm is good for simple two-dimensional geometries as well as for more complicated three-dimensional ones. The results are in agreement with those reported in literature by Cygler et al. ["Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning," Med. Phys. 31, 142-153 (2004)]. In addition, the authors have also analyzed the response of the 2D array in terms of dose profiles at different depths, comparing the results with those obtained in water phantom using an electron diode. The results show that in the low gradient regions there were no deviations larger than the criteria of acceptability set by Van Dyk et al. ["Commissioning and quality assurance of treatment planning computers," Int. J. Radiat. Oncol. Biol. Phys. 26, 261-273 (1993)]; in the high gradient region, the maximum deviations are less than 2 mm with most of the values less than 1 mm. The present article shows that MapCHECK can play a useful role in the commissioning of electron algorithms of treatment planning systems in the evaluation of the 2D dose distributions in homogeneous and heterogeneous phantoms. In fact, it provides accurate results with the merit of expediting the commissioning process by using measuring device that requires minimal setup time and data processing time.

MeSH terms

  • Algorithms
  • Electrons
  • Equipment Design
  • Humans
  • Monte Carlo Method
  • Particle Accelerators / instrumentation
  • Phantoms, Imaging
  • Radiometry / methods
  • Radiotherapy Planning, Computer-Assisted / instrumentation*
  • Reproducibility of Results
  • Scattering, Radiation
  • Software